Q.P. Code: 19EE0203			19
R	Reg. No:		
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR			
(AUTONOMOUS)			
B.Tech II Year I Semester Supplementary Examinations August-2022 ELECTRICAL MACHINES - I			
(Electrical and Electronics Engineering)			
Time: 3 hoursMax. Marks: 6			
	(Answer all Five Units $5 \times 12 = 60$ Marks)		
UNIT-I			
1	a How demagnetizing and cross magnetizing ampere turns per pole are calculated	L2	6M
	in a DC Machine?		
	b The brushes of a certain lap connected 400kw, 6-pole generator are given a lead	L3	6M
	of 18° electrical. From the data given, calculate (i) the demagnetizing ampere-		
	turns (ii) the cross-magnetizing ampere turns (iii) series turns required to balance		
	the demagnetizing component. The full load current is 750A and total numbers of		
	conductors are 900 and the leakage coefficient is 1.4.		
	OR		
2	a What are the causes for the failure of self-excitation?	L2	6M
	b Distinguish between Lap and Wave windings?	L2	6M
	UNIT-II		
3	A 25HP, 250V DC Series motor has armature resistance 0.1Ω and field resistance	L3	12M
	0.05Ω and brush Contact drop 3V. When the line current is 80A, the speed is		
	600rpm. Find the speed when the line Current is 100A.		
	OR		
4	Explain the operation of four point starter for a DC motor with neat diagram.	L2	12M
	UNIT-III		
5	Explain Swinburne's test on DC machines. What are its advantages and	L2	12M
	disadvantages?		
OR			
6	a Enumerate the losses in DC machine	L1	6M
	b Derive the condition for maximum efficiency.	L1	6M

UNIT-IV

- 7 a In a transformer, derive the condition for maximum efficiency and thus find the L3 6M load current at which the efficiency is maximum.
 - b A 20KVA,2000/200V single phase transformer has the following parameters L3 6M H.V winding: R1=3Ω, X1=5.3Ω, L.V winding: R2=0.05 Ω ,X2=0.1 Ω. Find the Voltage Regulation at (i) p.f of 0.8 lagging (ii) UPF (iii) 0.707 p.f leading.

OR

- 8 a Draw the Expression for Voltage regulation of a transformer form the simplified L3 6M approximate equivalent circuits of 1-Φ transformer and also obtain condition for zero regulation.
 - b A 10KVA, 2000/400V single phase transformer has the following data: R1=5Ω, L3 6M X1=12Ω, R2=0.2 Ω, X2=0.48 Ω. Determine the secondary terminal voltage at full load, 0.8 power factor lagging when the primary supply voltage is 2000V.

UNIT-V

- 9 a Draw and explain the Connection diagram of Y- Y & Δ-Δ connected 3-phase L2 6M transformer.
 - b Determine load shared by two transformers are each transformer when connected L2 6M in parallel With unequal voltage ratios.

OR

10 a Draw the equivalent circuit of an Auto transformer.
b In a 25-kVA, 2000/200V, single phase transformer, the iron and full-load copper
L2 7M losses are 350 and 400W respectively. Calculate the efficiency at unity p.f. on
(i) full load (ii) half full-load.

*** END ***